SYS://VISION.ACTIVE
VIEWPORT.01
LAT 28.0222° N
SIGNAL.NOMINAL
VISION Loading
Back to Blog

Sentiment Analysis for Customer Feedback: Understanding Your Users

Shane Barron

Shane Barron

Laravel Developer & AI Integration Specialist

Voice of the Customer at Scale

Manually reading thousands of reviews is impossible. Sentiment analysis automatically categorizes feedback, identifies trends, and surfaces critical issues requiring attention.

Basic Sentiment Analysis

class SentimentAnalyzer
{
    public function analyze(string $text): array
    {
        $prompt = <<ai->generate($prompt, ['temperature' => 0]), true);
    }
}

Batch Processing Reviews

class ReviewAnalyzer
{
    public function analyzeNewReviews(): void
    {
        Review::whereNull('sentiment_analyzed_at')
            ->chunk(100, function ($reviews) {
                foreach ($reviews as $review) {
                    $analysis = $this->sentiment->analyze($review->text);

                    $review->update([
                        'sentiment' => $analysis['sentiment'],
                        'sentiment_score' => $analysis['confidence'],
                        'aspects' => $analysis['aspects'],
                        'sentiment_analyzed_at' => now(),
                    ]);
                }
            });
    }
}

Trend Detection

class SentimentTrends
{
    public function getWeeklyTrend(string $productId): array
    {
        return Review::where('product_id', $productId)
            ->whereBetween('created_at', [now()->subWeeks(4), now()])
            ->selectRaw('
                WEEK(created_at) as week,
                AVG(CASE WHEN sentiment = "positive" THEN 1 ELSE 0 END) as positive_rate,
                COUNT(*) as review_count
            ')
            ->groupBy('week')
            ->get()
            ->toArray();
    }

    public function detectIssues(): Collection
    {
        // Find sudden increases in negative sentiment
        return Product::all()->filter(function ($product) {
            $recent = $product->reviews()->recent(7)->avg('sentiment_score');
            $baseline = $product->reviews()->recent(30)->avg('sentiment_score');

            return $recent < $baseline - 0.2; // 20% drop
        });
    }
}

Alert System

class SentimentAlerts
{
    public function check(): void
    {
        $issues = $this->trends->detectIssues();

        foreach ($issues as $product) {
            Alert::create([
                'type' => 'sentiment_drop',
                'product_id' => $product->id,
                'message' => "Sentiment dropped significantly for {$product->name}",
                'data' => $this->gatherContext($product),
            ]);
        }
    }

    private function gatherContext(Product $product): array
    {
        $negativeReviews = $product->reviews()
            ->where('sentiment', 'negative')
            ->recent(7)
            ->get();

        return [
            'common_complaints' => $this->extractCommonIssues($negativeReviews),
            'sample_reviews' => $negativeReviews->take(5)->pluck('text'),
        ];
    }
}

Conclusion

Sentiment analysis transforms unstructured feedback into actionable insights. Combine automated analysis with trend detection and alerts to stay ahead of customer issues.

Share this article
Shane Barron

Shane Barron

Strategic Technology Architect with 40 years of experience building production systems. Specializing in Laravel, AI integration, and enterprise architecture.

Need Help With Your Project?

I respond to all inquiries within 24 hours. Let's discuss how I can help build your production-ready system.

Get In Touch